Acquiring Robot Skills
via Reinforcement Learning

Vijaykumar Gullapalli, Judy A. Franklin,

and Hamid Benbrahim

kill acquisition is a difficult, yet important problem in robot
performance. In this work we focus on two skills, namely
robotic assembly and balancing and on two classic tasks to
develop these skills via learning: the peg-in-hole insertion task,
and the ball balancing task. A stochastic real-valued (SRV)
reinforcement learning algorithm is described and used for learn-

V. Gullapalli is with the Computer Science Department, University
of Massachusetts, Amherst, MA 01003. Email: vijayku-
mar@cs.umass.edu. J.A. Franklin and H. Benbrahim are with GTE
Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254.
Email: jfranklin@gte.com and hbenbrahim@gte.com. The work of
V. Gullapalli was supported by funding to A. Barto by the AFOSR,
Bolling AFB, under Grant AFOSR-449620-93-1-0269 and by the
NSF under Grant ECS-92-14866, and to R. Grupen by the NSF
under Grants CDA-8922572, IR1-9116291, and IRI-9208920
(CRICCS).

February 1994

FPG International/Charly Franklin

ing control, and we show how it can be used with nonlinear
(multilayer) artificial neural networks. In the peg-in-hole inser-
tion task, the SRV network successfully learns to insert a peg into
ahole with extremely low clearance, in spite of high sensor noise.
In the ball balancing task, the SRV network successfully learns
to balance the ball with minimal feedback. Both systems are
demonstrated in hardware.

Skill Acquisition for Robots

Skilled behavior involves the effective use of knowledge in
execution or performance. A skill may require dexterity or coor-
dination, and generally develops over time through learning. This
work focuses on employing learning to enable a robot to acquire
skills, particularly physical skills where learning control is re-
quired. The requirements are i) dealing with nonlinearity/com-
plex dynamics, ii) achieving robust performance under

0272-1708/94/304.00©19941EEE 13

uncertainty, and iii) learning control actions when feedback is
delayed and minimal.

Controllers must deal effectively with nonlinear robot kine-
matics and dynamics, complex interactions between the robot
and its environment, and insufficient or inaccurate information.
Unfortunately, there are many types of uncertainties and non-
linearities that traditional control design techniques do not take
into account, unless a complex control system is built. Hence
increasing attention is being focused on methods for learning
control. We study two control problems that exemplify these
issues: 1) the peg-in-hole insertion task and 2) ball balancing.
Both problems involve dealing with nonlinear processes, and
both are classic problems used by roboticists and control engi-
neers to test various approaches to control.

The peg-in-hole insertion problem is difficult to model ana-
lytically and exemplifies the difficulties raised by uncertainty in
real-world control problems. It is a canonical assembly task and
is, in fact, the most frequent assembly operation. The ball bal-
ancing problem task is also nonlinear in nature and presents
difficulties for control, requiring learning of control actions when
feedback is delayed and minimal. For robotics, balancing is an
important skill that can be applied to carrying objects or trans-
ferring several objects at once from arm to arm. It is also essential
to walking.

We focus on a particular method for learning skilled robot
control: direct real-valued reinforcement learning. This method
is described in the next section. Following this we describe the
SRV reinforcement learning algorithm and present some theo-
retical results. The fourth section contains an in-depth description
of two ways of using SRV units in a nonlinear artificial neural
network. The first way, with backpropagation, is used in the
peg-in-hole insertion task. The second, with a boxes repre-
sentation, is used in ball balancing. The final sections present
details of the implementations of SRV-based controllers for the
peg-in-hole insertion task and for the ball balancing task.

Reinforcement Learning and Control

Learning control involves modifying the controller’s behav-
ior to improve its performance as measured by some predefined
index of performance (IP). If control actions that improve per-
formance are known, supervised learning methods, or methods
for learning from examples, can be used to train the controller.
Unfortunately, in many control tasks, it is difficult to obtain
training information in the form of prespecified control actions,
in which case supervised learning methods are not directly
applicable. At the same time, evaluating a controller’s perform-
ance according to some IP is often fairly straightforward. In such
situations, appropriate control behavior must be inferred from
observations of the IP, and hence these tasks are ideally suited
for the application of associative reinforcement learning [3].

In associative reinforcement learning, the learning system’s
interactions with its environment are evaluated, and the goal of
the learning system is to learn to respond to (or associate) each
input with the action that has the best predicted evaluation. When
learning to control a plant, the learning system is the controller,
its actions are control signals, and the evaluations are based on
the IP associated with the control task.

In control engineering-based adaptive control, a distinction is
made between direct and indirect control design methodologies
(e.g., [16], [28]). Indirect methods obtain control parameters via

H

explicit identification of a prespecified model. The model pa-
rameters are estimated on-line, and the control parameters are
functions of the model parameters. Direct methods, on the other
hand, estimate the controller parameters directly on-line, without
constructing an explicit process model. Each method involves
minimizing an index of performance and the adaptation/estima-
tion process is based on strict stability requirements. Currently,
these requirements limit the structure of the process model and/or
the controller.

The distinction between direct and indirect adaptive control
parallels and inspires a similar distinction in reinforcement-based
learning control. Following Gullapalli [20], we distinguish be-
tween direct and indirect associative reinforcement learning
methods as follows. Indirect reinforcement learning methods
construct and use a model of the environment, while direct
reinforcement learning methods do not. The application of indi-
rect methods to learning control problems therefore involves two
distinct operations: construction of an adequate model, which
can itself be regarded as a learning problem, and using the model
to train the controller. As alternatives to this, direct methods rely
on perturbing the process and observing the consequences on the
IP to obtain the required training information.

As we have argued previously [4], [20], handcrafting or
learning an adequate model — imperative if one is to use indirect
methods for training the controller — can be very difficult in
some situations. This is because in these situations, either the
model is too inaccurate to be useful for training the controller, or
the form it is expressed in is inadequate for obtaining useful
training information. For example, as we shall illustrate using the
peg-in-hole insertion task, obtaining a sufficiently accurate
model might be impossible in the presence of uncertainty in
sensing and control. Likewise, although fairly accurate models
exist for complex processes such as chemical reactions, these
models often are in a form (e.g., differential equations) that
provides very little useful information for training a controller
for the modeled processes. Therefore, it can be expeditious to use
direct reinforcement learning methods in such situations.

Noisy sensors have a two-fold effect on learning and control.
First, a high noise level might seriously slow down the learning
or modeling process. Second, as the controller gets wrong read-
ings from the sensors, it can produce wrong actions. Statistical
control methods can alleviate this problem, but all of them either
severely increase the complexity of the controller or require some
knowledge about the characteristics of the noise. Reinforcement
learning methods are more efficient. They do not require an
explicit feedback signal, and since learning proceeds on-line, the
noise characteristics are taken into account in learning control.

Delayed evaluative feedback is another important issue in
reinforcement learning. The controller may receive evaluative
feedback for a control action several time steps (exact number
unknown) after the action was taken. This is the case in the ball
balancing problem. The use of an actor-critic reinforcement
learning architecture can solve this problem and is compatible
with the SRV algorithm.

In this article, peg-in-hole insertion and ball balancing tasks
are used as examples to illustrate the utility of direct associative
reinforcement learning methods for learning control under real-
world conditions. Artificial neural networks (also known as
connectionist networks) have previously been used to implement
direct associative reinforcement learning controllers (e.g., Waltz

IEEFE Control Systems

and Fu [34], Barto et al. (5], Franklin {12]-[14], Benbrahim e?
al. [6], Anderson [1]). Many of these implementations involved
bang-bang controllers, in which the learner had only two actions
to choose from. We use a fairly new reinforcement learning
algorithm that makes a continuum of actions available to the
controller. The particular algorithm used to train the controllers
is described in the next section.

Real-Valued Reinforcement Learning

A primary requirement for learning control is the availability
of a method for learning real-valued control outputs. The degrees
of freedom of most robots and other controlled systems take on
continuous values, and real-valued control outputs are necessary
for fine motion control and smooth movement. In this section,
we describe a direct reinforcement learning method for learning
real-valued functions that is based on the SRV unit algorithm of
Gullapalli {18].

SRV Algorithm
The SRV unit uses the Gaussian distribution to produce a
stochastic output for each input x, at time step n. Two internal
parameter vectors 0, and ¢n, are used to compute the two parame-
ters [n and O of the Gaussian distribution. {tn, = 0. x, and Gy =

s(/r\,,), where 7, = ¢Z xn is the predicted evaluation given input x,.
The function s(.) is a monotonically decreasing, nonnegative
function of r,, with 5(1.0) = 0.0 (assuming that the maxnmum
expected evaluation signal is 1.0). A simple example is s(rn) =
max(0.0, 1.0 — r,,). The output of the unit is computed as

zn="¥(lin, Gn) ey
where W is the Gaussian distribution.

The evaluative feedback or reinforcement r(z;,x») from the
environment is used to adjust future outputs by updating the
parameter vectors 0, and 0n. The unit uses the following algo-
rithm to update the parameter vector 0,

Opit = On + 0 (7 (2Zn, Xn) — Tn) [%} ®

The parameter vector ¢» used for predicting the evaluation is
updated as:

Ontt = On + P(r(zn, xn) - Fa) Xn . 3
In the above, o and P are learning rate parameters.

The SRV algorithm embodies the following idea. The fraction
in (2) represents the normalized perturbation added to the mean
output of the unit for the given input. If this perturbation has
caused the unit to receive an evaluation signal that is more than
the predicted evaluation, then it is desirable for the unit to
produce an output closer to the actual output z,. The mean output
value should therefore be changed in the direction of the pertur-
bation. On the other hand, if the evaluation received is less than
the predicted evaluation, then the unit should adjust its mean in
the direction opposite to that of the perturbation. Equation (2)
above is designed to achieve this desired effect on the mean
output. The mean output of the SRV unit is akin to the output of

February 1994

a standard neural network processing element, such as a linear
or logistic unit, and the parameter vector 0 is akin to the standard
weight vector. However, unlike most standard units, the SRV unit
is stochastic, and uses an additional parameter vector ¢ ta control
its stochasticity.

The stochasticity of the SRV unit serves two purposes. Ran-
domly perturbing the mean output and observing the consequent
change in the evaluation enables the unit to estimate the gradient
of the evaluation with respect to its output. As described above,
this enables the unit to search for and learn outputs that yield
increasingly higher evaluations. In addition, by using the pre-
dicted evaluation to compute the standard deviation G, the SRV
unit can control the extent of search for the best output for each
input. As the mean output [, for input x» gets closer to the best
possible output, the predicted evaluation P gets closer to the
maximum possible evaluation of one. This, in turn, causes the
standard deviation G, = $(*y) to shrink, thereby restricting the
search for a better output to a smaller nelghborhood of the current
mean output. When the mean output is optimal, T equals one and
the standard deviation becomes zero, causing the unit’s output to
be the optimal mean output.

Theoretical Aspects
It is useful to rewrite (2) as

On+1 = O + a(rn — ;\,,)ee)
where o is a learning rate, 9\,. is the predicted evaluation, and
eg is called the characteristic eligibility [36]. The predicted
evaluation can be generated by a separate network, or can be the
expected value of r. The characteristic eligibility is calculated
from the following (also see [36]):

The probability mass function for the Gaussian distribution is -

=
g = e 2 2
\—121t0' ° ®)
and the characteristic eligibility is
co = dlng dlng o (- _ W
a9 au 90 o> 99 o2
(6)

If o is a nonnegative real number and 7is conditionally
independent of the action z, = Y(Un,On), given 8y and xn, then
this algorithm belongs to a category of REINFORCE (“REward
Increment = nonnegative Factor x Offset Reinforcement X Char-
acteristic Eligibility”) algorithms. In particular, if o is propor-
tional to ¢, then (4) and (2) are the same. Williams [36] devised
the acronym REINFORCE and proved the following theorem.

Let A® = 0441 — 65, E denote the expectation operator, and
E{r10} be the performance measure that is to be maximized.

Theorem For any REINFORCE algorithm, the inner product
of E{ AB10} and GRADgE{rl0} is nonnegative, and

15

‘——————-—_—

E{ABIB} = oVeE{ri0} . ¢))
This theorem states that the average update vector in weight
space (O space) lies in the direction for which the performance
measure is increasing.
Unfortunately, there is no proof of strong convergence for this
family of algorithms. However, under some assumptions that are
fairly standard in stochastic approximation literature (e.g., [10])

and by choosing a learning rate proportional to o2, Gullapalli
[19] has proven that a modified version of the SRV algorithm
causes convergence of 0y, to a predefined unique optimal value.

Use of SRVin a
Nonlinear Artificial Neural Network

The SRV unit’s output is computed by passing a weighted sum
of its inputs through a Gaussian distribution. Therefore, by itself,
the SRV unit is not sufficient to learn the complex nonlinear
control functions necessary for most control problems. The
standard artificial neural network method for enabling the use of
such units for learning more complex functions is to create a
multilayer network. In this case, the output of the network is the
control action. Fig. 1 shows a multilayer network with a single
output unit. The inputs to this unit are the outputs of a “hidden”
layer of units. The hidden layer provides a nonlinear repre-
sentation of the inputs (such as peg or ball position or velocity)
to the output unit.

inputs hidden layer output unit

l |
1 1
! |
I]
| o)\ |
| |
|

x1
f(y2) p
x2 |

| fy3) I
| |

Fig. 1. Atwo layer artificial neural network using backpropagation.

In our implementations, we used two types of hidden layers.
In one case, the hidden units compute their outputs as weighted
sums of their inputs passed through a nonlinear function. Such
units are popularly known as backpropagation units or multilayer
perceptrons. We used this type of hidden layer in the controller
for the peg-in-hole insertion task. The second type of hidden
layer, called boxes, is also well-known and is a cross-product of
quantized values of the inputs. The boxes hidden layer was used
in the ball balancing task. Both types of hidden layers are
described in this section.

Backpropagation

The backpropagation algorithm [30] described here applies
to a two layer network with one output unit. The hidden layer
outputs are

16

n
Vi =Y Wij%j
=1 ®

where wij, j =1, ... n (n = number of inputs x;) are the weights or
parameters associated with the ith hidden unit. These weights are
adapted through learning. To obtain a nonlinear network, we use
a nonlinear differentiable function f, most often the sigmoid
function

flyi) = — .
1+e7™)

Theinputstotheoutputunitaref(y;), i = 1, ..., np where ny is
the number of units in the hidden layer. The output of the network
is

p = Zvi fOp 10)
and {v;, i = 1, ..., np} is the set of weights associated with the
output unit. These weights also are adapted through learning.

A widely used technique to train this network is based on the
Least Mean Squares (LMS) algorithm, which tends to minimize

the square of the error. If the desired output pg is known and p is
the network’s output given by (10), the error is

d=pi-p an

and we minimize

a2

The hidden weights are updated at each time step via gradient
descent as follows:

oE

Wijin + 1) = wij(n) — Ot—aw“ (13)
ij

=wiji(n) + ow; f'(pdx; . (19

The term vif’(y)6 is the error backpropagated through the con-
nection from unit i to the output unit (via weight v;), a simple
implementation of the chain rule. The weights connecting the
outputs of the hidden layer to the output unit are updated by

oE
viln + 1) = vi(n) - Ba—v 15)

=vi(n) + By . (16)
In these equations, o and 3 are non-negative values, called the
learning rates. The access of the network to exact desired outputs,
and the ability to formulate the error , are the reasons why this
form of learning is called supervised learning or learning from

IEEE Control Systems

examples. In our experiments, we do not have desired control
outputs and therefore cannot use supervised learning. However,
we can use SRV units in a backpropagation-like network in order
to gain the benefits of each: nonlinearity and direct reinforcement
learning. We show how to modify backpropagation for use with
SRV units after first describing another type of nonlinear super-
vised learning network that uses boxes.

Boxes

Fig. 2 shows a two layer network in which the hidden layer
is a set of “boxes.” The range of each of the “raw” inputs x; to
the network is found and divided into equal-length segments. The
cross product of all the segments along all the input dimensions
defines a set of “boxes.” Thus, each box demarcates a range of
values along each input dimension. A binary vector of the same
dimension as the number of boxes is used to represent the input
value at any time step. If the input value lies in a box, the
corresponding bit in the vector is set to 1, otherwise the bit is set
to 0. For example, in the one-dimensional case, if the input is the
value of the ball position, which has a range of -5 to 5, we might
divide it into 10 segments of length 1 each. Then, when the ball
position is -3.5, the boxes representation will be
(0,1,0,0,0,0,0,0,0,0]. The hidden layer outputs b; shown in Fig.
2 are the bit values of the boxes representation. Fig. 2 shows only
3 outputs but there may be many more. note that there will only
be one nonzero output b;. This is the advantage of the boxes
representation. In a sense, it is a division of the input space into
nonoverlapping operating modes.

inputs hidden layer: output unit

|
|
I boxes representation
|
|

|
|
|
1
bt {
I
|

x1
b2 P

! b3
I

Fig. 2. A two layer artificial neural network using boxes.

The boxes representation is a fixed representation. This means
that the only adaptable set of weights in the network are the
output unit’s weights. The output

p = Zyibi . a7

Note that because there is only one nonzero b; at each increment,

p=vj, where bj= 1, and b; = 0 for all i#j. The weights are updated
by

vi(n+1) = vi(n) — B%EL = vin) + Pob;
! (18)

where 0 is as defined in (11).

February 1994

Using SRV Units in Multilayer Networks

In order to understand how SRV units can be used in a
multilayer network, it is first necessary to understand the differ-
ence between error and reinforcement signals. An error signal
contains information about the target (optimal) output. This gives
the controller an explicit indication of the direction and the
magnitude of the correction it needs to make to nullify the error.
A reinforcement signal however, does not indicate on which side
of the optimal output the controller’s output is. Therefore, some
form of search is necessary to determine the direction of the error
between the current and the optimal outputs.

The SRV unit, for example, performs a local search by gen-
erating a random output. It then estimates an “error” signal

- —?(Z_IJ‘J
(¢}

from the correlation between the change in the action and the
change in the reinforcement. This estimate esgv is used in place
of the unknown actual error & to update the SRV unit’s parameters
(see (2)). Therefore, when an SRV unit is used as an output unit
in a multilayer network, it is reasonable to use the estimated error
esrv in the place of 8 to update the weights of the hidden layer
according to (16) or (18). Fig. 3 shows a two-layer network with
an SRV output unit.

€SRV

| I
inputs | hidden layer) stochastic
| 1 unit
[|
1 fy) | |
|
x1 !
#y2) z
x2 |
| fy3) |
| |
I |

Fig. 3. SRV network.

Peg-in-Hole Insertion

Peg-in-hole insertion has been widely used by roboticists for
testing various approaches to robot control. It has also been
studied as a canonical robot assembly operation [17], [22], [35].
This task is also highly relevant to industrial robotics because
about 33% of all automated assembly operations are peg-in-hole
insertions, making them the most frequent assembly operation.
The abstract peg-in-hole task can be solved quite easily (see [17]
for an overview) if the exact location of the hole is known and if
the manipulator can precisely control the position and orientation
of the peg. However, real-world conditions of uncertainty due to
1) errors and noise in sensory feedback, 2) errors in execution of
motion commands, and 3) movement of the part grasped by the
robot, can substantially degrade the performance of conventional
methods based on position control.

Misalignment caused by the uncertainty in positioning the peg
relative to the hole can cause an insertion operation to fail. In
such cases, conventional position control of the insertion opera-

17

examples. In our experiments, we do not have desired control
outputs and therefore cannot use supervised learning. However,
we can use SRV units in a backpropagation-like network in order
to gain the benefits of each: nonlinearity and direct reinforcement
learning. We show how to modify backpropagation for use with
SRV units after first describing another type of nonlinear super-
vised learning network that uses boxes.

Boxes

Fig. 2 shows a two layer network in which the hidden layer
is a set of “boxes.” The range of each of the “raw” inputs x; to
the network is found and divided into equal-length segments. The
cross product of all the segments along all the input dimensions
defines a set of “boxes.” Thus, each box demarcates a range of
values along each input dimension. A binary vector of the same
dimension as the number of boxes is used to represent the input
value at any time step. If the input value lies in a box, the
corresponding bit in the vector is set to 1, otherwise the bit is set
to 0. For example, in the one-dimensional case, if the input is the
value of the ball position, which has a range of -5 to 5, we might
divide it into 10 segments of length 1 each. Then, when the ball
position is -3.5, the boxes representation will be
[0,1,0,0,0,0,0,0,0,0]. The hidden layer outputs b; shown in Fig.
2 are the bit values of the boxes representation. Fig. 2 shows only
3 outputs but there may be many more. note that there will only
be one nonzero output b;. This is the advantage of the boxes
representation. In a sense, it is a division of the input space into
nonoverlapping operating modes.

inputs hidden layer: output unit

| |
| I
| boxes representation |
| 1
[|

|

b1

x1
b2 p
x2]

!
b3 !
!
|

Fig. 2. A two layer artificial neural network using boxes.

The boxes representation is a fixed representation. This means
that the only adaptable set of weights in the network are the
output unit’s weights. The output

p = Zyib;i . an

Note that because there is only one nonzero b; at each increment,

p=vj, where bj=1, and b; = 0 for all i#j. The weights are updated
by

W) = viln) — B—S—’é = vi(n) + BObi
i (18)

where 8 is as defined in (11).

February 1994

Using SRV Units in Multilayer Networks

In order to understand how SRV units can be used in a
multilayer network, it is first necessary to understand the differ-
ence between error and reinforcement signals. An error signal
contains information about the target (optimal) output. This gives
the controller an explicit indication of the direction and the
magnitude of the correction it needs to make to nullify the error.
A reinforcement signal however, does not indicate on which side
of the optimal output the controller’s output is. Therefore, some
form of search is necessary to determine the direction of the error
between the current and the optimal outputs.

The SRV unit, for example, performs a local search by gen-
erating a random output. It then estimates an “error” signal

/

from the correlation between the change in the action and the
change in the reinforcement. This estimate esgy is used in place
of the unknown actual error 8 to update the SRV unit’s parameters
(see (2)). Therefore, when an SRV unit is used as an output unit
in a multilayer network, it is reasonable to use the estimated error
esrv in the place of 8 to update the weights of the hidden layer
according to (16) or (18). Fig. 3 shows a two-layer network with
an SRV output unit.

A
esRV =r—r[

! 1
inputs ! hidden layer I' stochastic
l I unit
I |
I fyl) |
|
xt !
f(y2) z
x2 1
| wn /|
1 |
I I

Fig. 3. SRV network.

Peg-in-Hole Insertion

Peg-in-hole insertion has been widely used by roboticists for
testing various approaches to robot control. It has also been
studied as a canonical robot assembly operation [17], [22], [35].
This task is also highly relevant to industrial robotics because
about 33% of all automated assembly operations are peg-in-hole
insertions, making them the most frequent assembly operation.
The abstract peg-in-hole task can be solved quite easily (see [17]
for an overview) if the exact location of the hole is known and if
the manipulator can precisely control the position and orientation
of the peg. However, real-world conditions of uncertainty due to
1) errors and noise in sensory feedback, 2) errors in execution of
motion commands, and 3) movement of the part grasped by the
robot, can substantially degrade the performance of conventional
methods based on position control.

Misalignment caused by the uncertainty in positioning the peg
relative to the hole can cause an insertion operation to fail. In
such cases, conventional position control of the insertion opera-

17

Fig.4. The Zebra Zero robot used for the peg-in-hole insertion task.

tion has to be augmented with some method of overcoming
possible misalignments. One approach is to use geometric path
planning techniques to determine a motion sequence that has the
highest likelihood of success given the peg and hole geometries
and the margins of uncertainty in executing that sequence. Pre-
imaging [26], backprojection [11], and other strategies (e.g., [7],
[9]) have been proposed for geometric path planning.

Alternative approaches, based on reactive control, try to
counter the effects of uncertainty with on-line modification of
the insertion path based on sensory feedback. Compliant motion
control, in which the motion path is modified by contact forces
or tactile stimuli occurring during the motion, is often used. We
focus on force-guided insertion strategies that cause the manipu-
lator to deviate from its nominal motion path depending on the
sensed contact forces. Force control serves two purposes. First,
it can be used to prevent excessive contact forces from damaging
the peg and hole and the manipulator during assembly. More
importantly, force control can correct misalignment by mapping
contact forces arising from misalignment to motions that reduce
the misalignment.

The key component in implementing force-guided assembly
is the difficult task of specifying the manipulator’s admittance,
which determines how the manipulator responds to forces. A
common approach (e.g., [31]), sometimes referred to as the two
phase approach, involves first determining a nominal collision-
free assembly path assuming there are no uncertainties in posi-
tioning the parts. In the second phase, this path is analyzed to
determine what kinds of collisions are likely to occur at any point
along the path given a model of the uncertainty. The contact
forces are computed at the points of collision using a model of
the physics of interaction of rigid bodies, and a corresponding
corrective motion is determined. An admittance mapping is then
obtained by interpolating a suitable function over this set of
contact force—corrective motion pairs.

There are practical limitations in implementing this two phase
approach, First, because only a limited number of data points is
used to determine the admittance mapping, one cannot be sure
that all possible contact forces will be mapped to corrective
motions. Moreover, determining which manipulator configura-
tion and contact force combinations are critical in forming the
admittance mapping is a hard problem. As Asada [2] points out,
many assembly tasks require complex nonlinear admittance

18

mappings, but humans find it quite difficult to prespecify appro-
priate admittance behavior [26], especially in the presence of
uncertainty and noise. A second problem is the approach’s reli-
ance on models of both the uncertainty and the interaction forces
between parts in designing the admittance. Both are notoriously
difficult to model in the presence of friction and when the robot
is interacting physically with its environment. Therefore, the
synthesized admittance might not perform as intended in prac-
tice.

Because of the shortcomings of these approaches, peg-in-hole
insertion under uncertainty is a good candidate problem for
applying learning approaches (e.g., [18], [32]). This is demon-
strated here by using a Zebra Zero robot shown in Fig. 4 to
perform peg-in-hole insertions. This robot is equipped with a
wrist force sensor, and can also sense positions of the joints of
the arm through position encoders.

We performed experiments to quantify the uncertainty of
these sensors. In order to quantify the position uncertainty during
interactions between the peg and the hole, we compared the
sensed peg position with its actual position in Cartesian space
when different forces were acting on the peg. The robot was
commanded to maintain a fixed position under five different load
conditions applied sequentially: no load, and a fixed load of 0.12
kgf applied in the £x and ty directions. Under each condition,
the position and force feedback from the robot sensors, as well
as the actual x-y position of the peg were recorded.

Sensed x-y positions were computed from the joint positions
sensed by the Zero’s joint position encoders. We found a large
discrepancy between the sensed and actual positions of the peg:
while the actual change in the peg’s position under the external
load was of the order of 2 to 3 mm, the largest sensed change in
position was less than 0.025 mm. In comparison, the clearance
between the peg and the hole was 0.175 mm. Fig. 5 shows 30
time-step samples of the force sensor output for each of the load

[SPVWENV WPV NIV P WV P NIPUNY NIF WUV WAR Vv e

Forces scaled to +/- 0.25 Kgf
~<'|'|

My

MWMMMM
N S T

30 60 90 120 150 180

Moments scaled to +/- 5.0 Kgf-mm

No load Loadin-y Loadin+x loadin+y Loadin-x Noload

Fig. 5. Time-step samples of the sensed forces and moments
under 5 different load conditions. With an ideal sensor, the
readings would be constant in each 30 time-step interval.

IEEFE Control Systems

_

conditions described above. As can be seen from the figure, there
is considerable sensor noise, especially in recording moments.

Learning Peg-in-Hole Insertion

Our approach to learning a reactive control strategy for peg
insertion under uncertainty is based on active generation of
compliant behavior using a nonlinear mapping from sensed
positions and forces to position commands (see also [21]). The
controller learns this mapping through repeated attempts at peg
insertion. It should be emphasized here that because of the
uncertainty, using a PD position controller to directly servo the
peg into the hole (given the nominal location of the hole) does
not work, especially when the clearances are much smaller than
the positional uncertainty, as is the case here. Moreover, there is
no guarantee that the interaction forces will be safely bounded
when using a PD position controller. Therefore, the admittance
mapping learned by the network is essential for safe, reliable
insertion.

Peg Insertion Task. The peg insertion task is depicted in Fig.
6. Starting from a random initial position and orientation, the
robot has to move the peg in a trajectory that will result in the
peg being inserted in the hole. For this task, the peg is 30 mm
long and 6 mm in diameter, while the hole is chamferless and
6.35 mm in diameter. Thus the clearance between the peg and
the hole is 0.175 mm.

Sensations are:
Position (X, Y,Z,©, 9,)and

Forces/ (F ,F ,F,M_,M_,M).
Moments * ¥ F XY F

Controls are:

Position commands (x, y, z, 8,, 6,)

Fig. 6. The peg-in-hole insertion task.

Controller. The controller is implemented as a connectionist
network that operates in closed loop with the robot. The network
has 11 inputs. These are the sensed positions and forces, (X, ¥,
Z, ©1, ©) and (Fx, Fy, Fz, Mx, My, M;). The network’s five
outputs form the position command (x, y, z, 61, 82). Following
Asada [2], we used two hidden layers of 30 units each. Both
layers of hidden units are comprised of backpropagation units,
while the output units are the SRV reinforcement learning units
[18]. The extension of backpropagation from two to three layers,
and from one to five output units, is a straightforward applica-
tion of the chain rule.

The Cartesian position inputs to the network are computed
from the sensed joint positions using the forward kinematics
equations for the Zero robot. The force and moment inputs are
those sensed by the six-axis force sensor. APD servo loop servos
the robot to the position output by the network at each time step,
resulting in some motion of the peg.

February 1994

-

=3

S
1

0.801-

Smoothed final evaluation
[=)
2
1

0.40

0201

0.00]] |] | |]
25 125 225 325 425 525 625 725

Trials
(a)

e,
(=] [=)
S S
[=] [=]
o o
I 1

Smoothed insertion tim
3
8
I

40.001—

20.004

0.00 | l | | |] !
25 125 225 325 425 525 625 725

Trials

(b)

Fig. 7. Smoothed final evaluation received and smoothed
insertion time (in simulation time steps) taken on each of 800
consecutive trials on the peg insertion task. The smoothed curve
was obtained by filtering the raw data using a moving-average
window of 25 consecutive values.

Training Methodology. The controller network is trained in a
sequence of trials, each of which starts with the peg at a random
position and orientation with respect to the hole and ends either
when the peg is successfully inserted in the hole, or when 100
time steps have elapsed. An insertion is termed successful when
the peg is inserted to a depth of 25 mm into the hole. An
evaluation of the controller’s performance r ranging from 0 to 1
with 1 denoting the best possible evaluation, is computed based
on the new peg position and the forces acting on the peg as

19

(c)

Fig. 8. Sequential images of the robot inserting the peg under the control of the trained network.

max (0.0, 1.0-0.01llposition errorll)
_ if all forces < 0.5 Kgf
max (0.0,1.0-0.01 liposition errorll) ~0.1Fmax
otherwise

where Fmax denotes the largest magnitude force component.
Thus, the closer the sensed peg position is to the desired
position with the peg inserted in the hole, the higher the evalu-
ation. Large sensed interaction forces, however, reduce the
evaluation, since these forces should be minimized. Using this
evaluation, the network adjusts its weights appropriately and the
cycle is repeated. Note that because the position error is deter-
mined from the sensed position of the peg and the nominal
location of the hole, both of which are subject to uncertainty, the
evaluation can be inaccurate -and noisy. However, -our results
indicate that despite the noisy evaluation, our approach can be
used to successfully train a network to perform skilled insertion.

20

Performance Results

A learning curve showing the final evaluation over 800 con-
secutive trials on the insertion task is shown in Fig. 7(a). The final
evaluation levels off close to 1 after about 400 trials because after
that amount of training, the controller is consistently able to
perform successful insertions within 100 time steps. However,
performance as measured by insertion time continues to improve,
as is indicated by the learning curve in Fig. 7(b), which shows
the time to insertion decreasing over the 800 trials. These curves
indicate that the controller becomes progressively more skillful
at peg insertion with training. Similar results obtained for the 2D
peg insertion task are reported in [20].

Fig. 8 shows a sequence of snapshots of the robot performing
an insertion under the control of the trained network. As seen in
the second snapshot in the sequence, during the insertion process
the peg often contacts the flat surface surrounding the hole due
to the positional uncertainty. Because of the absence of a chamfer,
this kind of positional uncertainty would cause difficulties for

IEEE Control Systemls

traditional approaches. However, our controller learns a strategy
for sliding the peg over the flat surface into the hole, thereby
ensuring successful insertion.

Discussion

The high degree of uncertainty in the sensory feedback from
the Zebra Zero, coupled with the fine motion control require-
ments of peg-in-hole insertion make the task under consideration
an example of learning control under extreme uncertainty. The
positional uncertainty, in particular, is of the order of 10 to 50
times the clearance between the peg and the hole and is primarily
due to gear backlash. There is also significant uncertainty in the
sensed forces and moments due to sensor noise. Our results
indicate that direct reinforcement learning can be used to learn a
reactive control strategy that works robustly even in the presence
of a high degree of uncertainty.

Although others have studied similar tasks, in most other
work on learning peg-in-hole insertion (e.g., [25]) it is assumed
that the positional uncertainty is about an order of magnitude /ess
than the clearance. Moreover, results are often presented using
simulated peg-hole systems. Our results indicate that our ap-
proach works well with a physical system, despite the much
higher magnitudes of noise and consequently greater degree of
uncertainty inherent in dealing with physical systems. Further-
more, the success of the direct reinforcement learning approach
to training the controller indicates that this approach can be useful
for automatically synthesizing robot control strategies that sat-
isfy constraints encoded in the performance evaluations.

Ball Balancer

The ball balancer is also a nonlinear system that is difficult to
control and is a classic problem used by control theorists to study
nonlinear control {23], [24]. It also requires the learning of
control actions when feedback is delayed (under our assumptions
for the problem). Of late it has been used as a testbed both in
control education courses and in academic research labs [8]. For
robotics, balancing is an important skill that can be applied to
carrying objects or transferring several objects at once from arm
to arm. Balancing is also essential to walking [15], [29].

The dynamic model of the ball balancer is nonlinear, even
when the “jumping ball” phenomenon is disregarded [24]. Mod-
eling of the ball balancer is not as difficult as modeling the

Fig. 9. The ball balancer.

February 1994

peg-insertion dynamics, and control techniques exist that use the
model and control the balancer successfully.

However, the actual system can suffer from sensor-based
uncertainty, particularly when the ball jumps. For this reason, we
do not rely on the position feedback as much as a traditional
controller might. Instead of a position error signal, we can rely
on a reinforcement signal. In fact we assume a minimal and
delayed reinforcement. Also, the balancer becomes more diffi-
cult to model and control as it is generalized into a more articu-
lated robotic system. Thus it is a good candidate for direct
reinforcement learning.

Learning Ball Balancing

Our approach to ball balancing is based on work by Barto et
al. [5] in using reinforcement learning to balance an inverted
pendulum. Their work involves using a two-action reinforcement
learning algorithm. We applied the two-action algorithm success-
fully to the ball balancer prior to applying the real-valued SRV
algorithm [6]. The actions in both cases are voltages applied to
the motor that moves the beam.

Ball Balancing Task. As shown in Fig. 9, the balancer is a beam
made of a 16" x 2" section of aluminum attached at its center to a
shaft, which a dc motor can turn in both directions. Two bumpers
under the beam limit its movement to angles of about 20° from the
horizontal. The beam has a one inch high fence along one side. A
metal ball rolls along the fence on the beam. Bumpers at the ends of
the beam prevent the ball from falling off, A pressure sensor meas-
ures the ball’s position; a potentiometer attached to the axle of the
beam measures the beam’s angle.

The state of the balancer is represented by four variables: the
position of the ball, its velocity, the angle of the beam, and its angular
velocity. Both velocities are calculated by evaluating the differences
of the positions at successive increments of time. This is a real-time
task; at every increment (20 times a second or increments of 50 ms)
the computer reads the state of the system, issues the action and
updates the learning weights. The reinforcement it receives in order
to update the weights is minimal. We show how the leaming
controller uses this minimal information next.

Controller. In the ball balancer experiment, we use Barto et
al’s actor-critic configuration [5] for reinforcement learning.
The actor is the nonlinear artificial neural network with an SRV
output unit that outputs the control action that becomes the motor
voltage. The hidden layer is a set of boxes that represents the
quantized state. In the ball balancing application there are 5 ball

Reinforcement

Predicted

Inputs Reinforcement

Fig. 10. The actor-critic reinforcement learning architecture.

21

position segments, 6 ball velocity segments, 3 angular position
segments, and 2 angular velocity segments, for a total of 5 X 6 X
3 x 2 = 180 boxes (or hidden units). The hidden layer becomes
the set of inputs used by the SRV.

We assume that the evaluative feedback is minimal:

e {0 if the ball is balanced,
—1 if the ball hits either beam end. (19)

The actor-critic architecture deals effectively. with minimal
reinforcement. As a result the system learns that having the ball
in the center of the beam with a very small speed is the safest
situation. Without the critic, this situation would look to the
system like any nonfailure situation.

As described in Fig. 10, the actor outputs the action or control,
and the critic evaluates the action, given the “raw” performance
evaluation r. The role of the critic is to assign an evaluation to
each action. Without the critic, the system would receive only a
0or—1. Since the system gets a nonzero reinforcement only when
the ball fails, it needs the critic to build an evaluation function
for the states that are far away from the failure states.

We rewrite the SRV weight update equation here for conven-
ience:

9n+1 = en + a(r(Zn, xn) - ;'\n) {Zn; lan
n

Xn .
) (20)

The critic network outputs a prediction g(z) of the reinforc%-
ment [33]. When using a critic, the predicted reinforcement ry,
becomes a difference in successive predictions of reinforcement:

Fao= (q(n - 1) = yq () Q1)

where 0<y<1 is a constant gain. The idea is that the critic predicts
discounted future reward. r,, is a difference between the predic-
tion at time step n-1 and the “actual” discounted reward at step
n. The critic has to use its own prediction rather than the actual
r, until r is nonzero. Both the critic and SRV networks use r-ras
the “error” in (20) to update their weights. Fig. 11 shows the
critic’s modification of the reinforcement signal.

The critic solves the problem of “delayed” reinforcement via
computing a difference in successive predictions and via another
mechanism called eligibility traces. When the ball fails it is not
only the last action that is responsible, but a certain succession
of actions. We assume that actions are more and more responsible
for failure the closer they are to it in time. Eligibility traces are
moving average filters that replace the eligibility eq, of (4).
Eligibility traces provide a decaying history that aids the algo-
rithm in learning, when the reward signal is delayed.

Simply, (20) is replaced by

Ops1 = On + @ (7 (2n, xn)—’/}n)Te (22)
where
To(n + 1) = ATo(n) + (1-1A)es
= ATg(n) + (1 — A) [En——-ﬁri—] Xn
On
(23)
22

Ball position
2400 2600 3000 3200 3400 3600
0 + + + ~+ 4
£
£-5 1
5
E
e
-1 4
(a)
Ball position
2400 2600 3000 3200 3400 3600
0 +— + - 4 4
£=3
o
g,-.s 1
e
-1 L] L
(b)

Fig. 11. (a) The modification of the reinforcement by the critic.
(b) The “raw” reinforcement.

where x is the input and 0<A<1 is the decay rate. This amount of
feedback, along with the use of the critic network and the
eligibility factors is enough for the system to learn to control the
balancer. The roots of using the critic’s successive predictions
plus eligibility are in classical conditioning [5], [33].

Training Methodology. The SRV unit of the controller com-
putes an action based on the sensed positions and the computed
velocities. The action is multiplied by a gain and sent to the power
amp and then to the motor actuating the beam. The state is
sampled at the next time increment and the reinforcement as well
as the predicted reinforcement are computed. These values plus
the last action taken are used to update the weights, on-line. The
new weights are used to compute the next action.

When a failure occurs (the ball hits either end of the beam)
the number of steps until failure is recorded and the ball is moved
out of the failure zone by exerting a torque causing the beam to
move toward the opposite failure zone. The number of steps until
failure can be plotted as a learning curve.

Performance Results. The stochastic real-valued output-
based controller successfully learns to balance the ball and
improves over the two-action controller previously imple-
mented. We show three plots in the following figures. Fig. 12
shows a plot of the number of successful steps (time increments)
before each failure. The leaming curve shows that after 700
failures the ball is balanced with no further failure.

Fig. 13 shows both the ball position and velocity, after the
controller has learned to balance, when the ball is placed in a
failure zone. Note that the position and velocity never settle

IEEE Control Systems

1000
2 800
.8 600
3
%g 400
3 g 200
0 — * = T + +
€ 8§88 g8 8 8
Number of failures
Fig. 12. Number of steps as a function of number of failures.
3500 T failure upper limit
3300
e 3100 -
2
2 2900 1
2 2700 |
8 2500 | . —
failure lower limit
2300 t } + }
° 8 8 § 8
- ~N (] <
number of steps
200
100
Foy
3 0
E
8 -100
200 number of steps

Fig. 13. Ball position and velocity as a function of steps when the
ball is placed in a failure zone at the end of the beam.

down. This is a ramification of using the discrete resolution of
the boxes representation.

Discussion

In our experiment the goal is to keep the ball from hitting
either end. The balancer learns to keep the ball as far as possible
from the failure states. One could modify this goal to make the
ball go to different positions. One could add other constraints
such as penalizing the balancer for actions high in magnitude,
penalizing high speed, or penalizing high rates of change in
successive actions. Combining these constraints together, one
can obtain smooth and slow balancing.

We have tried to minimize the energy used by making r a
function of IzI, the absolute value of the control action. The result
is that the motion of the system is smoother, but the position
oscillates more. When the action magnitude is small, the ball goes
far from the center and then a larger control action brings it back
to the center.

Clearly different performance criteria require different rein-
forcement functions. This is an area we are interested in pursuing.

February 1994

Robots Acquiring Skills

It is important to the field of learning control and robotics to
have real robots learn to acquire skills, and this continues to be
our goal. Towards this end, we presented the stochastic real-val-
ued reinforcement learning algorithm and argued for its utility in
learning control. Since we are addressing nonlinear control prob-
lems, we described how the SRV unit can be used in two different
multilayer artificial neural networks, both of which are capable
of learning nonlinear control functions. In the peg-in-hole inser-
tion task, the SRV was coupled with backpropagation to form a
three-layer five-output network that successfully learned to skill-
fully insert a peg into a chamferless hole with low clearance
under a high degree of uncertainty. In the ball balancing task, the
SRV unit was coupled with a boxes representation and a rein-
forcement critic, and successfully learned to balance the ball.
Both systems were real, not simulations. .

The capabilities of learning control approaches to controlling
real robots can be vastly extended if we use available control
tools and combine them in new ways. In the past, we have
combined conventional pole placement-based control with rein-
forcement learning [12]-[14] on simple robotic simulations. As
the controlled robots become more complicated, we envision
more complex.control architectures that combine control mod-
ules based on SRV type learning algorithms with control modules
designed using conventional control techniques. For example, a
controller may learn to choose between different control modules
based on their performance under different operating conditions,
or the outputs of a learning system and a conventional controller
may be combined to form the control signal to a nonlinear plant.

Acknowledgment
J. Franklin and H. Benbrahim would like to acknowledge the
support of John Vittal for this work and the encouragement of
Oliver Selfridge.

References
[1] C.W. Anderson, “Strategy learning with multilayer connectionist repre-
sentations,” in Proc. Fourth Int. Workshop Machine Learning, Irvine, CA. 1987.

[2] H. Asada, “Teaching and learning of compliance using neural nets:
Representation and generation of nonlinear compliance,” in Proc. 1990 IEEE
Int. Conf. Robot. Auto., 1990, pp. 1237-1244.

[3]1 A.G. Barto and P. Anandan, “Pattern recognizing stochastic learning
automata,” IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 360-375, 1985.

[4] A.G. Barto and V. Gullapalli, “Neural networks and adaptive control,” in
Natural and Artificial Intelligence (Research Notes in Neural Computation), P.
Rudomin, M.A. Arbib, and F. Cervantes-Perez, Eds. Springer-Verlag, 1992.

[5] A.G. Barto, R.S. Sutton, and C.W. Anderson, “Neuronlike elements that
can solve difficult learning control problems,” IEEE Trans. Syst., Man,
Cybern., vol. 13, pp. 835-846, 1983.

[6] H. Benbrahim, J. Doleac, J. Franklin, and O. Selfridge, “Real-Time
Learning: A Ball ona Beam,” in Proc. 1992 Int. Joint Conf. Neural Networks,
Baltimore, MD, June 1992,

[71 ME. Caine, T. Lozano-Pérez, and W.P. Seering, “Assembly strategies for
chamferless parts,” in Proc. IEEE Int. Conf. Robot. Auto., May 1989, pp. 472-477.

[8) Control Syst. Mag., vol. 12, June 1992.

[9] B.R. Donald, “Robot motion planning with uncertainty in the geometric
models of the robot and environment: A formal framework for error detection
and recovery,” in Proc. IEEE Int. Conf. Robot. Auto., pp. 1588-1593, 1986.

23

[101 A. Dvoretzky, “On stochastic approximation,” in Proc. Third Berkeley
Symp. Math. Stat. Probability, vol. 1. Berkeley and Los Angeles, CA: Univ.
of California Press., 1956, pp. 39-55.

[11] M. Erdmann, “Using backprojections for fine motion planning with
uncertainty,” Int. J. Robot. Res., vol. 5, no. 1, pp. 19-45, 1986.

[12] J.A. Franklin, “Learning control in a robotic system,” in Proc. 1987
IEEE Int. Conf. Syst., Man, Cybern., Alexandria, VA, 1987.

[13] J.A. Franklin, “Refinement of robot motor skills through reinforcement
learning,” in Proc. 27th IEEE Conf. Decision Control, Austin, TX, Dec. 1988.

[14] J.A. Franklin, “Input representation for refinement learning control,” in
Proc. 4th Int. IEEE Symp. Intell. Control, Albany, NY, Sept. 1989.

[15] J. Furusho, and A. Sano, “Sensor-based control of a nine-link biped,” in
Robot. Res., vol. 9, pp. 83-98, Apr. 1990.

[16] G.C. Goodwin and K.S. Sin, Adaptive Filtering, Prediction, and Control.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

[17] S.J. Gordon, “Automated assembly using feature localization,” Ph.D.
thesis, Tech. Rep. 932, Massachusetts Inst. of Technology, M.I.T. Al Labo-
ratory, Cambridge, MA, 1986.

[18] V. Gullapalli *“A stochastic reinforcement learning algorithm for learning
real-valued functions,” Neural Net., vol. 3, pp. 671-692, 1990.

{19] V. Gullapalli, “Associative reinforcement learning of real-valued func-
tions,” in Proc. 1991 IEEE Int. Conf. Syst., Man, Cybern., Charlottesville,
VA, Oct. 1991.

[20] V. Gullapalli, “Reinforcement learning and its application to control,”
Ph.D. thesis, Univ. Massachusetts, Amherst, MA, 1992,

[21] V. Gullapalli, “Learning control under extreme uncertainty,” in Advances
in Neural Information Processing Svstems, C.L. Giles, S.J. Hanson, and J.D.
Cowan, Eds. San Mateo, CA: Morgan Kaufmann, 1993.

[22] R.E. Gustavson, “A theory for the three-dimensional mating of cham-
fered cylindrical parts,” J. Mechanisms, Transmissions, Auto. Des., Dec.
1984.

[23] R.R. Kadiyala, “A tool box for approximate linearization of nonlinear
systems,” Control Syst. Mag., vol. 13, pp. 47-57, Apr. 1993.

[24] P.V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE
Control Syst. Mag., vol. 12, pp. 7-17, June 1992.

[25] S. Lee and M.H. Kim, “Learning expert systems for robot fine motion
control,” in Proc. 1988 IEEE Int. Symp. Intell. Control, H.E. Stephanou, A.
Meystal, and J.Y.S. Luh, Eds. Washington, DC: IEEE Computer Soc., 1989,
pp. 534-544.

[26] T.Lozano-Pérez, M.T. Mason, and R H. Taylor, “Automatic synthesis of
fine-motion strategies for robots,” Int. J. Robot. Res., vol. 3, no. 1, pp. 3-24,
Spr. 1984.

[271 D. Michie and R. Chambers, “BOXES: An experiment in adaptive
control,” in Machine Intelligence, E. Dale and D. Michie, Eds. Edinburgh,
U.K.: Oliver and Boyd, 1968.

[28] K.S. Narendra, “Adaptive control using neural networks,” in Neural
Networks for Control, T. Miller, R.S. Sutton, and P.J. Werbos, Eds. Cam-
bridge, MA: M.LT. Press, 1990, ch. 5.

[29] M.H. Raibert, Legged Robots That Balance. Cambridge, MA: M.LT.
Press, 1986.

[30] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, D.E. Rumelhart and J.L.
McClelland, Eds., vol. 1, Foundations. Cambridge, MA: Bradford
Books/M.LT. Press, 1986.

24

[31] J.M. Schimmels and M.A, Peshkin, “Admittance matrix design for
force-guided assembly,” IEEE Trans. Robot. Auto., vol. 8, no. 2, pp. 213-227,
Apr. 1992,

[32] J. Simons, H.V. Brussel, J.D, Schutter, and J.Verhaert, “A self-learning
automaton with variable resolution for high precision assembly by industrial
robots,” IEEE Trans. Auto. Control, vol. 27, no. 5, pp. 1109-1113, Oct. 1982.

[33] R.S. Sutton, “Temporal credit assignment in reinforcement learning,”
Ph.D. diss., Dept. Computer and Info. Science, Univ. of Massachusetts,
Amherst, MA, 1984.

[34]M.D. Waltz and K.S. Fu, “Aheuristic approach to reinforcement learning
control systems,” [EEFE Trans. Auto. Control, vol. 10, pp. 390-398, 1965.

[35] D.E. Whitney, “Quasi-static assembly of compliantly supported rigid
parts,” J. Dynamic Syst., Meas., Control, vol. 104, Mar. 1982. Also in Robot
Motion: Planning and Control, M. Brady et al., Eds. Cambridge, MA: M.LT.
Press, 1982.

[36] R.J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp. 5-229-
256, May 1992.

Vijaykumar Gullapalli received the B.S. degree in electrical engineering
and the M.S. degree in mathematics from the Birla Institute of Technology
and Science, India, in 1984. He received the M.S. and Ph.D. degrees in
computer science from the University of Massachusetts, Amherst, in 1988
and 1992, respectively. He currently holds a joint appointment with the
UMass Adaptive Networks and Perceptual Robotics Laboratories as a Post-
Doctoral Research Associate, pursuing robotic applications of his disserta-
tional work on reinforcement learning and its application to control. His
interests include learning in natural and artificial systems, algorithms for
learning and adaptation in connectionist systems, and applications of connec-
tionist learning techniques to problems in control, cognition, and pattern
recognition. His current research focuses on learning control under condi-
tions of uncertainty and noise.

Judy A, Franklin earned the B.A. degree in mathe-
matics at Clarion University of Pennsylvania in
1980. She then studied at the University of Massa-
chusetts, Amherst, where she earned the M.S. de-
gree in computer science (1983) and the Ph.D.
degree in electrical and computer engineering
(1988). Her thesis focused on learning and compli-
ance in robotics, using reinforcement learning and

i conventional control techniques. She is interested in
dextrous machines as well as machines that are cognitively inclined (and
both). Her current research is a melding of symbolic machine learning and
artificial intelligence, artificial neural networks, and control techniques. The
purpose is to control dynamic systems that are undertaking complex problems
and tasks. She has been an originator and builder in two different hardware
dynamic systems labs, one at UMass and one at GTE Laboratories Incorpo-
rated where she has worked since 1987. At GTE she is part of an Adaptive
Systems Department that applies many different methodologies to GTE
business problems, such as wireless communication channe] allocation and
network traffic control.

Hamid Benbrahim received the Maitrise in electri-
cal engineering and D.E.A. in instrumentation and
control from Université de Caen, France, in 1988
and 1989, respectively. He is currently doing re-
search at GTE Laboratories Incorporated in ma-
chine learning and is attending the University of
New Hampshire for a Ph.D. in electrical engineer-
ing. His dissertation will focus on real-time learning
control applied to biped robots. His main interests
lie in robotics and intelligent control.

IEEE Control Systems

